

Tetrahedron Letters 40 (1999) 8833-8836

Through-bond interaction between sulfonium and sulfenyl sulfur atoms having anthracene and naphthalene spacers

Emiko Koyama, a Kenji Kobayashi, a Ernst Horn a and Naomichi Furukawa a *

^aDepartment of Chemistry and Tsukuba Advanced Research Alliance Center, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

^bDepartment of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

Received 30 July 1999; revised 31 August 1999; accepted 10 September 1999

Abstract

The reaction of 9-(methylsulfinyl)-10-(methylthio)anthracene with trifluoroacetic anhydride followed by quenching with aqueous NaHCO₃ gives 9,9-bis(methylthio)-10-anthraquinone. The dithia dication and/or the corresponding carbodication via through-bond interaction between sulfonium and sulfenyl sulfur atoms is proposed as an intermediate. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: anthracenes; carbonium ions; sulfonium salts; sulfoxides.

In the past two decades the study of σ -bonded dithia dications formed by intramolecular through-space interaction between sulfur atoms in close proximity has been of considerable interest. Recently, Nenajdenko and we have extended this chemistry to intermolecular reactions. The Pummerer reaction of mono-sulfoxides of p-bis(methylthio)-aromatics (aromatics=benzene, biphenyl, diphenyl sulfide, etc.) with trifluoroacetic anhydride (TFAA) gives a mixture of the corresponding mono-Pummerer product, bis-Pummerer product, and bis-sulfide in an n:1:1 ratio ($n \ge 2$), wherein intermolecular interaction between sulfonium and sulfenyl sulfur atoms is much more favorable than the through-bond interaction between them (Scheme 1). In the course of the search for aromatic spacers, we have noticed the distinctive behavior of 9-(methylsulfinyl)-10-(methylthio)anthracene (1) and 1-(methylsulfinyl)-4-(methylthio)naphthalene (8). Herein, we report the reactions of 1 and 8 with acids or acid anhydrides, which proceed via the dithia dication B and/or the corresponding carbodication C as a result of throughbond interaction between sulfonium and sulfenyl sulfur atoms.

The reaction of the mono-sulfoxide 1 with 5 equiv. of TFAA in CH_2Cl_2 at $-20^{\circ}C$ for 5 min followed by quenching with aqueous NaHCO₃ gave 9,9-bis(methylthio)-10-anthraquinone (3),⁵ together with 9,10-anthraquinone (4) and 9,10-bis(methylthio)anthracene (5), in 79, 5, and 6% isolated yields, respectively (Scheme 2). This reaction is independent of the concentration of 1. In marked contrast to other mono-sulfoxides of p-bis(methylthio)-aromatics,³ it is noted that the reaction of 1 with TFAA does not afford

Corresponding authors.

Scheme 1.

any Pummerer products. The 13 C NMR spectrum of 3 showed two characteristic peaks at δ 57.61 and 182.53 due to the quaternary carbon of dithio acetal and the carbonyl carbon, respectively. Furthermore, the molecular structure of 3 was confirmed by the X-ray diffraction analysis (Fig. 1).

Scheme 2.

The reaction of 1 with TFAA in CDCl₃ at -20° C was monitored by NMR spectroscopy. The ¹H NMR spectrum exhibited only two singlet peaks at δ 2.28 and 7.54, and the ¹³C NMR spectrum showed a peak at δ 87.98 which is characteristic of the quaternary carbon attached with methylthio and trifluoroacetate groups. These data are in good agreement with the structure of 9,10-bis(methylthio)-9,10-bis(trifluoroacetoxy)anthracene (2) (Scheme 3).^{5,7} The reaction of a 1:1 mixture of 9-(trideuteriomethylsulfinyl)-10-(methylthio)anthracene (1-d₃) and 9-(methylsulfinyl)-10-(trideuteriomethylthio)anthracene (1'-d₃) with TFAA followed by quenching with aqueous NaHCO₃ afforded 9-(methylthio)-9-(trideuteriomethylthio)-10-anthraquinone (3-d₃) as a sole product for 3, indicating that the conversion of 2 into 3 is an intramolecular rearrangement.

$$CD_3S$$
 SCH_3
 CH_3S
 SCD_3
 SCD_3
 SCH_3
 SCH_3

The formation of 2 from 1 and TFAA strongly suggests through-bond interaction between two sulfur atoms during the course of the reaction. The plausible mechanism is as follows (Scheme 3). The reaction of 1 with TFAA gives the trifluoroacetoxysulfonium salt A, which could be converted into the transient

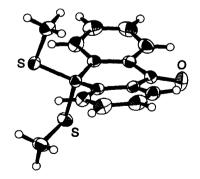


Figure 1. Molecular structure of 3 (35% probability ellipsoids)

$$CH_{3} \xrightarrow{\text{TFAA}} \begin{bmatrix} CF_{3}CO_{2} \\ CH_{3} & \\ CF_{3}CO_{2} \end{bmatrix} \xrightarrow{\text{CH}_{3}} \begin{bmatrix} CH_{3} & \\ CH_{3} & \\$$

Scheme 3.

quinoid-like dithia dication $\bf B$ and/or the corresponding carbodication $\bf C^{8,9}$ via through-bond interaction between sulfonium and sulfenyl sulfur atoms. It is known that, in 9,10-disubstituted anthracene dications, substantial positive charge is localized at the C9 and C10 positions. Double addition of trifluoroacetates to $\bf B$ and/or $\bf C$ could produce $\bf 2$. Hydrolysis of the trifluoroacetate group in $\bf 2$ followed by intramolecular rearrangement of the methylthio group from C9 to C10 affords $\bf 3$.

Further evidence for the formation of **B** and/or C via through-bond interaction comes from the reactions of 1 with H_2SO_4 and trifluoromethanesulfonic anhydride (Tf_2O) , wherein the neucleophilicity of these counter ions generated is lower than that of trifluoroacetate. Treatment of 1 with H_2SO_4 at room temperature for 5 min followed by quenching with NaHCO₃ quantitatively gave 9,10-anthraquinone (4) and dimethyl disulfide (Scheme 4), in marked contrast to 1-(methylsulfinyl)-4-(methylthio)benzene. This result supports the formation of **B** and/or **C** followed by the attack of H_2O on the carbocations to afford 4. The reaction of 1 with 1 equiv. of Tf_2O in $CH_2Cl_2:CH_3CN$ (v/v 2:3) at $-20^{\circ}C$ for 5 min followed by quenching with aqueous NaHCO₃ quantitatively afforded a 1:1 mixture of 4 and 9,10-bis(methylthio)anthracene (5) (Scheme 4). When quenched with 2 equiv. of thiophenol, a mixture of 5, 9-(methylthio)-10-(phenylthio)anthracene (6), and 9,10-bis(phenylthio)anthracene (7) was exclusively obtained in a 1:2:1 ratio together with diphenyl-, methylphenyl-, and dimethyl disulfides.

Scheme 4.

The reaction of 1-(methylsulfinyl)-4-(methylthio)naphthalene (8) with TFAA under the same conditions as Scheme 2 afforded the normal mono-Pummerer product 9, 1-(methylthio)-4-(trifluoroacetoxy)naphthalene (10), and the bis-sulfide 11 in 41, 22, and 18% yields, respectively (Scheme 5). A bis-Pummerer product which would be produced via intermolecular through-space interaction was detected in only trace amounts. The formations of 10 and 11 could result from through-bond interaction between sulfur atoms. Single addition of trifluoroacetate to a type B and/or C of naphthalene followed by the attack of another trifluoroacetate on the sulfur atom of the resulting

cationic O,S-acetal could give 10 and methylsulfenyl trifluoroacetate, which could be reacted with 8 to afford 11.4c

Scheme 5.

In summary, we have demonstrated through-bond interaction between sulfonium and sulferly sulfur atoms having anthracene and naphthalene spacers. This result could be attributed to the stability of the dication of polycyclic arenes. 8b,9 Thus, the interchange of intramolecular through-bond and intermolecular through-space interactions between sulfur atoms of p-bis(methylthio)-aromatics can be controlled by the nature of the aromatic spacers. 3,10

Acknowledgements

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan (No. 09239103) and University of Tsukuba (TARA project fund).

References

- (a) Musker, W. K. Acc. Chem. Res. 1980, 13, 200.
 (b) Furukawa, N. Bull. Chem. Soc. Jpn. 1997, 70, 2571, and references cited therein.
- 2. Nenajdenko, V. G.; Shevchenko, N. E.; Balenkova, E. S. Tetrahedron 1998, 54, 5353.
- 3. Kobayashi, K.; Koyama, E.; Namatame, K.; Kitaura, T.; Kono, C.; Goto, M.; Obinata, T.; Furukawa, N. J. Org. Chem. 1999, 64, 3190.
- 4. Kita and co-workers reported that treatment of p-sulfinylphenol derivatives with TFAA causes a Pummerer-type reaction on aromatic rings to give p-quinones via quinone mono O,S-acetals (α-acyloxy sulfides on aromatic rings): (a) Akai, S.; Takeda, Y.; Iio, K.; Yoshida, Y.; Kita, Y. J. Chem. Soc., Chem. Commun. 1995, 1013. (b) Kita, Y.; Takeda, Y.; Matsugi, M.; Iio, K.; Gotanda, K.; Murata, K.; Akai, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 1529. (c) Akai, S.; Takeda, Y.; Iio, K.; Takahashi, K.; Fukuda, N.; Kita, Y. J. Org. Chem. 1997, 62, 5526.
- 5. Spectral data for 2: 1 H NMR (CDCl₃, -20° C) δ 2.28 (s, 6H), 7.54 (s, 8H); 13 C NMR (CDCl₃, -20° C) δ 15.17, 87.98, 118.34 (q, ${}^{1}J_{CF}$ =287.5 Hz), 124.40, 129.56, 131.07, 154.17 (q, ${}^{2}J_{CF}$ =43.9 Hz); 19 F NMR (CDCl₃, -20° C) δ -76.88. Data for 3: mp 91–92°C; 1 H NMR (CDCl₃, rt) δ 1.62 (s, 6H), 7.47 (t, J=7.4 Hz, 2H), 7.71 (t, J=7.0 Hz, 2H), 8.27 (d, J=8.1 Hz, 2H), 8.35 (d, J=8.4 Hz, 2H); 13 C NMR (CDCl₃, rt) δ 13.96, 57.61, 126.22, 128.03, 129.96, 131.95, 134.20, 143.58, 182.53; EI-MS m/z 287 (M*+1). Anal. calcd for C₁₆H₁₄OS₂: C, 67.10; H, 4.93. Found: C, 67.17; H, 5.10.
- 6. Crystal data for 3: $C_{16}H_{14}OS_2$, M=286.41, $0.50\times0.50\times0.60$ mm, triclinic, space group $P\bar{1}$, a=8.296(3), b=12.406(3), c=7.424(4) Å, $\alpha=90.97(3)$, $\beta=112.47(3)$, $\gamma=102.62(2)^\circ$, V=684.7(5) Å³, Z=2, $D_c=1.389$ g cm⁻³, $\mu(Mo-K\alpha)=3.76$ cm⁻¹, T=296 K, $2\theta_{max}=55.0^\circ$, 3365 reflections measured, 3150 unique ($R_{int}=0.009$). The refinement (215 variables) based on F converged with R=0.033, $R_w=0.031$, and GOF=1.23 using 2604 unique reflections ($I>3.0\sigma(I)$).
- 7. Compound 2 in CDCl₃ is stable at -20°C at least for 1 h under an Ar atmosphere.
- 8. Anthracene oxidatively produces the radical cation in H₂SO₄ and the dication in SbF₅/SO₂CIF. (a) Brouwer, D. M.; van Doorn, J. A. Recueil 1972, 91, 1110. (b) Forsyth, D. A.; Olah, G. A. J. Am. Chem. Soc. 1976, 98, 4086.
- 9. Olah, G. A.; Singh, B. P. J. Org. Chem. 1983, 48, 4830.
- Treatment of 1-(methylsulfinyl)-4-(methylthio)benzene with H₂SO₄ causes an oxygen migration reaction to give a mixture
 of the mono-sulfoxide, the bis-sulfoxide, and the bis-sulfide, but not benzoquinone. Kobayashi, K.; Obinata, T.; Furukawa,
 N. Chem. Lett. 1997, 1175.